ISSN 1600-5368

Yang Farina,^a Ibrahim Baba,^a A. Hamid Othman,^a Ibrahim Abdul Razak,^b Hoong-Kun Fun^b and Seik Weng Ng^c*

^aSchool of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.009 Å R factor = 0.054 wR factor = 0.146 Data-to-parameter ratio = 23.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis[*N*-(2-hydroxyethyl)-*N*-methyldithiocarbamato-*S*,*S'*]diphenyltin

The Sn atom in the title compound, $[Sn(C_6H_5)_2(C_4H_8NOS_2)_2]$, is six-coordinate in a *cis*-C₂SnS₄ octahedral environment.

Comment

Six-coordinate bis-chelated diaryltin compounds generally adopt a *cis*-octahedral geometry (Ng *et al.*, 1987). The bond dimensions of the Sn atom in the title compound, (I), are similar to those found in the symmetrical compound, diphenyltin bis[bis(2-hydroxyethyl)dithiocarbamate] (Farina *et al.*, 2001).

Experimental

A solution of carbon disulfide in methanol was added to a mixture of diphenyltin dichloride and 2-hydroxyethylmethylamine (1:2 molar stoichiometry) at 277 K. The mixture was stirred to afford a pale-yellow solid, which was collected and recrystallized from a methanol/ chloroform mixture to afford the title compound (m.p. 401–402 K). Elemental analysis, found (calculated) for $C_{20}H_{26}N_2O_2S_4Sn: C$ 40.40 (41.90), H 4.83 (4.57), N 5.24 (4.89), Sn 20.88% (20.70%).

Crystal data

$[Sn(C_6H_5)_2(C_4H_8NOS_2)_2]$	$D_x = 1.532 \text{ Mg m}^{-3}$
$M_r = 573.36$	Mo $K\alpha$ radiation
Monoclinic, P2/c	Cell parameters from 8192
a = 8.9931 (1) Å	reflections
b = 12.2068 (1) Å	$\theta = 1.7 - 28.3^{\circ}$
c = 22.6703 (3) Å	$\mu = 1.38 \text{ mm}^{-1}$
$\beta = 92.507 \ (1)^{\circ}$	T = 298 (2) K
$V = 2486.29 (5) \text{ Å}^3$	Block, colorless
Z = 4	$0.26 \times 0.22 \times 0.16 \text{ mm}$
Data collection	
Siemens CCD area-detector	6025 independent reflections
diffractometer	4060 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.087$
Absorption correction: empirical	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\rm min} = 0.715, T_{\rm max} = 0.809$	$k = -11 \rightarrow 16$
17 084 measured reflections	$l = -30 \rightarrow 22$

Received 7 December 2000 Accepted 14 December 2000 Online 22 December 2000 Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2]$
$wR(F^2) = 0.146$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} = 0.001$
6025 reflections	$\Delta \rho_{\rm max} = 1.22 \text{ e } \text{\AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -1.77 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-C1	2.164 (5)	Sn1-S2	2.641 (1)
Sn1-C7	2.177 (5)	Sn1-S3	2.550 (1)
Sn1-S1	2.614 (1)	Sn1-S4	2.748 (2)
C1-Sn1-C7	102.7 (2)	C7–Sn1–S4	161.6 (2)
C1-Sn1-S1	95.2 (1)	S1-Sn1-S2	68.2 (1)
C1-Sn1-S2	160.2 (1)	S1-Sn1-S3	152.9 (1)
C1-Sn1-S3	103.2 (1)	S1-Sn1-S4	93.8 (1)
C1-Sn1-S4	87.0 (1)	S2-Sn1-S3	89.4 (1)
C7-Sn1-S1	100.7 (1)	S2-Sn1-S4	83.7 (1)
C7-Sn1-S2	91.3 (1)	S3-Sn1-S4	67.8 (1)
C7-Sn1-S3	94.6 (1)		

 Table 2

 Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1a \cdots O2^{i} \\ O2 - H2a \cdots O1^{i} \\ C15 - H15a \cdots S1 \end{array}$	0.96 0.96 0.97	2.26 2.21 2.44	2.703 (8) 2.703 (8) 3.025 (8)	107 110 118
$C19-H19b\cdots S3$	0.97	2.52	2.958 (7)	107

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

One of the two hydroxyethyl groups is disordered, but this was not resolved. The N–C distance was *DFIX*ed at 1.47 ± 0.01 Å, the C–C distance at 1.54 ± 0.01 Å and the C–O distance at 1.43 ± 0.01 Å; the S1/S2/C13/N1/C14/C15 system was restrained to be planar by *FLAT* 0.01.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

Figure 1

ORTEPII (Johnson, 1976) plot of the title compound at the 50% probability level. H atoms are shown as circles of arbitrary radii.

We thank Universiti Kebangsaan Malaysia and the National Science Council for R & D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662 and 190-9609-2801), for supporting our research.

References

Farina, Y., Baba, I., Othman, A. H., Razak, A. I., Fun, H.-K. & Ng, S. W. (2001). Acta Cryst. E57, m46–47.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295–305.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.